Exercise 42

A sphere with radius 1 m has temperature $15^{\circ} \mathrm{C}$. It lies inside a concentric sphere with radius 2 m and temperature $25^{\circ} \mathrm{C}$. The temperature $T(r)$ at a distance r from the common center of the spheres satisfies the differential equation

$$
\frac{d^{2} T}{d r^{2}}+\frac{2}{r} \frac{d T}{d r}=0
$$

If we let $S=d T / d r$, then S satisfies a first-order differential equation. Solve it to find an expression for the temperature $T(r)$ between the spheres.

Solution

$$
S=\frac{d T}{d r} \quad \rightarrow \quad \frac{d S}{d r}=\frac{d}{d r} \frac{d T}{d r}=\frac{d^{2} T}{d r^{2}}
$$

Substituting these expressions into the differential equation gives

$$
\begin{aligned}
\frac{d S}{d r}+\frac{2}{r} S & =0 \\
\frac{d S}{d r} & =-\frac{2}{r} S
\end{aligned}
$$

This is a separable differential equation, so we can solve for $S(r)$ by bringing the terms with S to the left and the constants and terms with r to the right and then integrating both sides.

$$
\begin{aligned}
d S & =-\frac{2}{r} S d r \\
\frac{d S}{S} & =-\frac{2}{r} d r \\
\int \frac{d S}{S} & =\int-\frac{2}{r} d r \\
\ln |S| & =-2 \ln |r|+C \\
\ln |S| & =\ln |r|^{-2}+C \\
e^{\ln |S|} & =e^{\ln |r|^{-2}+C} \\
|S| & =e^{C}|r|^{-2} \\
S(r) & = \pm e^{C}|r|^{-2}
\end{aligned}
$$

The absolute value around r can be dropped since $r>0$. Also, let $C_{1}= \pm e^{C}$.

$$
\begin{aligned}
S(r) & =C_{1} r^{-2} \\
\frac{d T}{d r} & =C_{1} r^{-2} \\
d T & =C_{1} r^{-2} d r \\
\int d T & =\int C_{1} r^{-2} d r \\
T(r) & =C_{1} \frac{1}{-1} r^{-1}+C_{2}
\end{aligned}
$$

$$
T(r)=-C_{1} \frac{1}{r}+C_{2}
$$

To solve for the integration constants, we need to use the boundary conditions given in the problem. We are told that the temperature at the surface of the smaller sphere is $15^{\circ} \mathrm{C}$ and that the temperature at the surface of the larger sphere is $25^{\circ} \mathrm{C}$. Therefore, $T(1)=15$ and $T(2)=25$.

$$
\begin{aligned}
& T(1)=-C_{1} \frac{1}{1}+C_{2}=15 \\
& T(2)=-C_{1} \frac{1}{2}+C_{2}=25
\end{aligned}
$$

Solving this system of equations gives $C_{1}=20$ and $C_{2}=35$. Thus, the equation for the temperature is as follows.

$$
T(r)=-20 \frac{1}{r}+35
$$

The function is plotted below versus r from 1 to 2 .

Figure 1: Plot of $T(r)$ vs. r.

